Regulation of a double-stranded RNA modification activity in human cells.
نویسندگان
چکیده
A double-stranded RNA (dsRNA)-specific modification activity from Xenopus oocytes and human cells dsRNA modifier) converts adenosine residues present in dsRNA to inosines. The function of the dsRNA modifier is unknown, although it has been suggested that it may be part of the cellular antiviral response. We investigated the relationship between the activity of the dsRNA modifier, viral infection, and the antiviral response in human cells induced by poly(rI)-poly(rC) [poly(I.C)] treatment. We found, unexpectedly, that treatment of HeLa cells with poly(I.C) or other dsRNA molecules resulted in the dramatic inhibition of the dsRNA modifier. Mixing experiments, reconstruction experiments, and pretreatment of extracts with RNases indicated that inhibition of the dsRNA modifier did not result from the continued presence of a soluble inhibitor such as dsRNA) in the in vitro modification reactions. Treatment of cells with cyclohexamide or dactinomycin simultaneously with the poly(I.C) demonstrated that in vivo inhibition of the dsRNA modifier did not require new transcription or translation. The dsRNA modification activity was also substantially inhibited in cells infected with poliovirus and was slightly inhibited in cells infected with adenovirus. The inhibition of the dsRNA modifier during the antiviral state is thus not consistent with an antiviral function, and instead suggests another cellular function for dsRNA modification.
منابع مشابه
افزایش بیان اختصاصی ژن Cdk9 بوسیله microRNA-1 بالغ تک رشته در سلول های فیبروبلاست
Abstract Background: MicroRNAs (miRNAs) are endogenous, non-coding short RNAs (~22 nt) that can downregulate gene expression by translational repression, mRNA degradation, or transcriptional repression. miRNA misregulation has been implicated in pathogenic alterations such as cancer. In order to investigate microRNA functions in gene regulation and/or to modulate their expression in pathogenic...
متن کاملA double-stranded RNA unwinding activity introduces structural alterations by means of adenosine to inosine conversions in mammalian cells and Xenopus eggs.
Amphibian eggs and embryos as well as mammalian cells have been reported to contain an activity that unwinds double-stranded RNA. We have now found that adenosine residues have been modified in the RNA products of this unwinding activity. Although the modified RNA remains double-stranded, the modification causes the RNA to be susceptible to single-strand-specific RNase and to migrate as a retar...
متن کاملEnhancement of RNA Interference Effect in P19 EC Cells by an RNA-dependent RNA Polymerase
Background: RNA interference (RNAi) is a phenomenon uses double-stranded RNA (dsRNA) to specifically inhibit gene expression. The non-specific silencing caused by interferon response to dsRNA in mammalian cells limits the potential of utilizing RNAi to study gene function. Duplexes of 21-nucleotide short interfering dsRNA (siRNA) inhibit gene expression by RNAi. In some organisms, siRNA can als...
متن کاملمهار بیان ژن GFP به وسیله تداخل RNA (RNAi) در دودمان سلولی کارسینومای جنینی P19
Introduction: RNA interference (RNAi) is a phenomenon of gene silencing that uses double-stranded RNA (dsRNA), specifically inhibits gene expression by degrading mRNA efficiently. The mediators of degradation are 21- to 23-nt small interfering RNAs (siRNA). The use of siRNAs as inhibitors of gene expression has been shown to be an effective way of studying gene function in mammalian cells. Ai...
متن کاملLong-term suppression of HIV-1C virus production in human peripheral blood mononuclear cells by LTR heterochromatization with a short double-stranded RNA.
OBJECTIVES A region in the conserved 5' long terminal repeat (LTR) promoter of the integrated HIV-1C provirus was identified for effective targeting by a short double-stranded RNA (dsRNA) to cause heterochromatization leading to a long-lasting decrease in viral transcription, replication and subsequent productive infection in human host cells. METHODS Small interfering RNAs (siRNAs) were tran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 11 7 شماره
صفحات -
تاریخ انتشار 1991